On the Singularities in the Susceptibility Expansion for the Two-Dimensional Ising Model
نویسندگان
چکیده
For temperatures below the critical temperature, the magnetic susceptibility for the two-dimensional isotropic Ising model can be expressed in terms of an infinite series of multiple integrals. With respect to a parameter related to temperature and the interaction constant, the integrals may be extended to functions analytic outside the unit circle. In a groundbreaking paper, B. G. Nickel [10] identified a class of singularities of these integrals on the unit circle. In this note we show that there are no other singularities on the unit circle.
منابع مشابه
بسط دمای بالای پذیرفتاری مدل آیزینگ شبکه کاگومه با برهمکنش نزدیکترین همسایهها
The Ising model is one of the simplest models describing the interacting particles. In this work, we calculate the high temperature series expansions of zero field susceptibility of ising model with ferromagnetic, antiferromagnetic and one antiferromagnetic interactions on two dimensional kagome lattice. Using the Pade´ approximation, we calculate the susceptibility of critical exponent of fer...
متن کاملHigh order perturbation study of the frustrated quantum Ising chain
In this paper, using high order perturbative series expansion method, the critical exponents of the order parameter and susceptibility in transition from ferromagnetic to disordered phases for 1D quantum Ising model in transverse field, with ferromagnetic nearest neighbor and anti-ferromagnetic next to nearest neighbor interactions, are calculated. It is found that for small value of the frustr...
متن کاملMagnetic Properties in a Spin-1 Random Transverse Ising Model on Square Lattice
In this paper we investigate the effect of a random transverse field, distributed according to a trimodal distribution, on the phase diagram and magnetic properties of a two-dimensional lattice (square with z=4), ferromagnetic Ising system consisting of magnetic atoms with spin-1. This study is done using the effectivefield theory (EFT) with correlations method. The equations are derived using...
متن کاملLow-temperature series expansions for the square lattice Ising model with spin S > 1
We derive low-temperature series (in the variable u = exp[−βJ/S2]) for the spontaneous magnetization, susceptibility, and specific heat of the spin-S Ising model on the square lattice for S = 2 , 2, 2 , and 3. We determine the location of the physical critical point and non-physical singularities. The number of non-physical singularities closer to the origin than the physical critical point gro...
متن کاملComplex - temperature singularities in the d = 2 Ising model : triangular and honeycomb lattices
We study complex-temperature singularities of the Ising model on the triangular and honeycomb lattices. We first discuss the complex-T phases and their boundaries. From exact results, we determine the complex-T singularities in the specific heat and magnetization. For the triangular lattice we discuss the implications of the divergence of the magnetization at the point u = − 3 (where u = z2 = e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014